GIULIA PEROTTI

Postdoc fellow, MPIA

□ perotti@mpia.de

www.giuliaperotti.com

(i) 0000-0002-8545-6175

EDUCATION

2021 Ph.D. ASTROPHYSICS & PLANETARY SCIENCE

Ice and Gas: Linking infrared and Millimetric observations towards young Solar-type Stars

Niels Bohr Institute (NBI), University of Copenhagen, Denmark

Supervisor: Prof. Jes K. Jørgensen

2017 M.Sc. PHYSICAL CHEMISTRY

Modelling the CO chemistry of star-forming regions

Departments of Chemistry and Physics, Niels Bohr Institute, University of Copenhagen, Denmark

Supervisors: Profs. Jes K. Jørgensen & Lars E. Kristensen

ACADEMIC EMPLOYMENTS

2021 - 2024 POSTDOCTORAL RESEARCH FELLOW

Planet and Star Formation (PSF) Fellowship, Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany

Hosts: Profs. Henrik Beuther & Thomas Henning

2021 RESEARCH ASSISTANT at the Globe Institute, Copenhagen, Denmark, after Ph.D. submission

AWARDS AND GRANTS

2023	Ernst Patzer Award for the best publication by MPIA/ZAH junior scientists, 2000 EUR
2022	MPIA Bonuses for outstanding performance at MPIA, Heidelberg, Germany, 2200 EUR
2021	PSF Fellowship at MPIA, Heidelberg, Germany, 3 yr, >200k EUR
2018	COST ACTION: "Our Astro-Chemical History", Travel grants, 3000 EUR
2016	iGEM COMPETITION "Astrobiology" at Massachussets Institute for Technology, Bronze medal

TELESCOPE TIME AWARDS

	As PI:
2022	ALMA, 16.6 hrs, 2022.1.00727.S, A
2021	APEX, 18 hrs, 0108.F-9304, A
2020	SMA, 10 hrs, 2020B-S023B-S014, A
2020	APEX, 18 hrs, 0107.F-9304, A
2019	SMA, 10 hrs, 2019B-S014, B
2019	ALMA, 16.4 hrs, 2019.2.00087.S, C
2019	APEX, 22 hrs, 0105.F-9300, A
2018	APEX, 11 hrs, 0102.F-9304, A
2018	SMA, 8 hrs, 2018A-S033, B

As co-I or team member:

JWST, 385.5 hrs, 8 programs (8 GO, 2 GTO, 1 ERS) ALMA, 49.7 hrs, 3 programs, C GBT, 300+ hrs, large program, A IRAM30m, 108.4 hrs, 2 programs, A & B GEMINI, 2.5 hrs, 1 program, A IRTF, 7.5 hrs, 1 program, A

MANAGEMENT EXPERIENCE

2022 -	Management roles as i	nart of the	IM/ST_MINIDS	consortium
ZUZZ -	Management roles as i	Dail OI LIIC	7 4 4 7 1 - 1 4 1 1 1 4 7 7	CONSOLUTION

2022 Local organizing committee member of Heidelberg-Harvard meeting

2022 Local organizing committee member of Early Phase of Star Formation (EPoS)

2022 Organizer of the workshop "Introduction to ice spectroscopy fitting"

2021 - Member of MPIA Strategic Time Allocation Committee (STAC)

REVIEWING ACTIVITIES

RESEARCH ACTIVITY AND ACHIEVEMENTS

Star and planet formation, astrochemistry, infrared and millimetric observations

I used a novel multi-wavelength approach to investigate the chemistry of young protostars (Ph.D.) and planet-forming disks (Postdoc) to simultaneously study gaseous and solid molecules (e.g., water and methanol). I have contributed to the development of the ENIIGMA code, largely used to interpret JWST data. I worked on some of the very first JWST disk data and discovered, for the first time, a substantial water reservoir in the inner regions of a planet-hosting disk.

INTERNATIONAL COLLABORATIONS

Collaborations with researchers in several countries on three continents. I have several collaborations with researchers from my former/current affiliations and research visits: Copenhagen (Profs. Jørgensen, Andersen, Hassenkam), Heidelberg (Profs. Henning, Beuther), Leiden (Profs. van Dishoeck, McClure), USA (Profs. Pontoppidan, Öberg, Boogert).

I am also a member of 3 large JWST collaborations: 1 Early Release Science program, Ice Age (PI: McClure, 50+ members), 2 Guaranteed Time Observation programs, JOYS (PI: van Dishoeck, ~25 members), MINDS (PI: Henning, ~50 members).

TEACHING & MENTORING

2023/2024	Teaching at the M.Sc. course "Molecular Astrophysics" University of Heidelberg, Germany, fall semester
2023/2024	Teaching/mentoring at the M.Sc. course "MVSem: Protostars and Planets" University of Heidelberg, Germany, fall semester
2022/2023	Teaching at the M.Sc. course "Molecular Astrophysics" University of Heidelberg, Germany, fall semester
2019/2020	Co-supervision of the B.Sc. thesis of Vera Matenaar Niels Bohr Institute & London Metropolitan University, United Kingdom
2018 - 2021	Teaching Assistant at the Ungsdomslab (ULAB) Niels Bohr Institute, University of Copenhagen, Denmark
2018	Teaching Assistant for the M.Sc. course "The ISM and the formation of stars" Niels Bohr Institute, University of Copenhagen, Denmark , Block 4

MEMBERSHIP OF SCIENTIFIC SOCIETIES

2021 -	Junior Member of the International Astronomical Union (IAU)
2020 -	Member of the American Astronomical Society (AAS)
2020 -	Member of the European Astronomical Society (EAS)

OUTREACH & SERVICE

2021 - 2023	Representative of the Postdocs at Max Planck Institute for Astronomy, Heidelberg, Germany
2023	Co-organizer of Tag der offnen Tür des MPIA, Spectroscopy stand, Heidelberg, Germany
2021	Organizer of the MPIA weekly seminar of the Planet and Star Formation department
2021 -	Organizer of the Königstuhl Colloquium, MPIA, LSW, ZAH weekly joint seminar
2021 -	Organizer of Astrochemistry Discussions, monthly webinar series and podcast
2021 - 2023	Scientific writer for <u>duegradi</u> , magazine on climate change, 5 articles
2020 - 2021	Co-organizer of Astronomy on Tap Copenhagen, monthly astronomy outreach event

FURTHER RESEARCH EXPERIENCE

2020	Visiting research group of Prof. Boogert, Institute for Astronomy Manoa, Hawaii, 1 month
2020	Observing astronomer at the Submillimeter Array, Mauna Kea, USA, 5 nights
2018	Visiting research group of Prof. Fraser, The Open University, United Kindom, 1 month
2017	Synchrotron measurements of meteorites, Paul Scherrer Institute, Switzerland, 3 days
2015	Observing astronomer at the North Optical Telescope, La Palma, Spain, 4 nights

INVITED SEMINARS & REVIEWS

Selected invited talks, reviews since 2018 (> 25)

Patzer Colloquium, MPIA, ZAH, Heidelberg, Germany
Königstuhl Colloquium, MPIA, LSW, ZAH, Heidelberg, Germany
Niels Bohr Institute, GLOBE Institute, Copenhagen, Denmark
Center for Interstellar Catalysis (InterCat), Aarhus, Denmark [listen <u>here</u>]
National Congress of Protoplanetary Astrochemistry, Trieste, Italy - review
Origins 2023, IAU Astrobiology, ISSOL, Quito, Ecuador - review [declined]
SPF seminar, ESO Munich, Garching, Germany
RIKEN, Tokyo, Japan
NAOJ, Tokyo, Japan
Fachbeirat 2023, MPIA, Heidelberg, Germany
Science Day, MPIA, Heidelberg, Germany
Université Paris Saclay, IAS, Paris, France
First JWST result meeting, Baltimore, USA - online [listen here]
ASIAA, Taipei, Taiwan - online
Niels Bohr Gold Medal Symposium, Copenhagen, Denmark
TUNA talk, NRAO, Charlottesville, USA - online
MPE, Center for Astrochemical Studies (CAS), Garching, Germany - online
Carnegie EPL Astronomy Seminars, Washington DC, USA - online
Chalmers University of Technology, Gothenburg, Sweden - online
ESO Munich, Garching, Germany - online
ZUNA talk, NRAO, Charlottesville, USA - online
Astrochemical Frontiers: Quarantine Edition - online
AAS 235 meeting, Honolulu, USA
ASIAA TIARA "Origins of the Solar System", Taipei, Taiwan
MPIA PSF Coffee, Heidelberg, Germany
Institute for Theoretical Astrophysics (ITA), Heidelberg, Germany
The Open University - Milton Keynes, United Kingdom

SELECTED PRESS RELEASES

As first author:

08. 2023	Spiegel	Aufnahmen des James-Webb-Teleskops: Gibt es anderes Leben im Weltall?
07. 2023	Spiegel+	Schon auf der Baby-Erde könnte es Wasser gegeben haben
07. 2023	MPIA	Water discovered in rocky planet-forming zone offers clues on habitability
07. 2023	CNN	Webb telescope spots water in a nearby planetary system
07. 2023	NASA/ESA	Webb Detects Water Vapor in Rocky Planet-Forming Zone

Full list of upcoming seminars, podcasts and press releases can be accessed here.

Number of published and submitted publications (as of 17 October 2023)

In total:

As first author:

18 papers (6 submitted)

5 papers

First author papers

Perotti G., Christiaens V., Henning Th., Tabone B., Waters L. B. F. M., Kamp I., Olofsson G., Grant S. L., Gasman D., Bouwman J., Samland M., Franceschi R., van Dishoeck E. F. et al. Water in the terrestrial planet-forming zone of the PDS 70 disk. *Nature*, 620, 516 (2023)

Description: Discovery of water in the only disk with confirmed planets using JWST/MIRI. The detection represents the first inspection of the region where terrestrial planets form in a nascent solar system. I performed the JWST data reduction/analysis, wrote the manuscript and I significantly contributed to the development of the data reduction pipeline. The mass media provided extensive coverage to the publication (e.g. NASA/ESA, CNN). The <u>press releases</u> led to multiple academic invitations, including (so far) 7 seminars, 1 review talk, several interviews, and 3 podcasts.

Perotti G., Jørgensen, J. K., Kristensen, L. E., Rocha W. R. M., Artur de la Villarmois E., Fraser, H. J., Bjerkeli P., Sewilo M., and Charnley S. B. Linking in the Coronet Cluster in Corona Australis. *A&A*, 678, A78 (2023)

Description: **Determination of the gas-ice interplay in Corona Australis.** By using a set of observing facilities (SMA, APEX, VLT, Spitzer) we find that the methanol gas-to-ice ratios estimated in Corona Australis, Orion and Serpens are remarkably similar suggesting that the overall methanol chemistry is set during the prestellar stage. I am the PI of the SMA and APEX data. I performed the data reduction, lead the analysis/discussion and wrote all the manuscript.

Perotti G., Sørensen O. H., Haack H., Andersen C. A., Ferreira Sanchez D., van Kooten E. M. M. E., Tsai E. H. R., Dalby K. N., Holler M., Grolimund D., and Hassenkam T. Thermal history of matrix forsterite grains from Murchison based on high-resolution tomography. *ApJ*, 922, 256 (2021)

Description: First application of ptychographic X-ray nanotomography in planetary science. We characterise the 3D structure of building blocks of planets (Murchison samples) at nm resolution. I conducted this project during my Ph.D., without co-authorship/guidance from my advisor, showcasing my skill in bridging knowledge gaps to achieve holistic insights. I supported the sample preparation at the synchrotron, I lead the data analysis and wrote the manuscript.

Perotti G., Jørgensen, J. K., Fraser H. J., Suutarinen A. N., Kristensen L. E., Rocha W. R. M., Bjerkeli P., and Pontoppidan K. M. Linking ice and gas in the λ Orionis Barnard 35A cloud. A&A, 650, A168 (2021)

Description: Determination of the gas-ice interplay in Orion. By observing the λ Orionis cluster with SMA, APEX, IRAM30m, AKARI we find a gas-ice opposite trend. This is explained by the physical conditions of the region: the gas emission is more intense and the ice abundances are lower towards the shocked region affected by ice sputtering. I am the PI of the SMA and APEX data. I performed the data reduction, lead the analysis and wrote all the manuscript.

Perotti G., Rocha W. R. M., Jørgensen, J. K., Kristensen, L. E., Fraser, H. J., and Pontoppidan K. M. Linking ice and gas in the Serpens low-mass star-forming region. *A&A*, 643, A48 (2020)

Description: **Determination of the gas-ice interplay in Serpens.** Using a multi-wavelength approach (SMA, APEX, VLT) we find that there is no straightforward correlation between the gas species with their solid-state counterparts in Serpens. I performed the data reduction, I merged the interferometric and single-dish data, I lead the analysis and wrote all the manuscript. **This project establishes the foundation for interpreting JWST gas and ice data.**

Non first-author papers with substantial contributions

Rocha W. R. M., **Perotti G.**, Kristensen, L. E., and Jørgensen, J. K. Fitting infrared ice spectra with genetic modelling algorithms. Presenting the ENIIGMA fitting tool. *A&A*, 654, A158 (2021)

Description: Presentation of ENIIGMA, a new toolbox for JWST data analysis. ENIIGMA is a publicly available code developed for the astrochemistry community. Since the release of JWST spectra on June 2022, ENIIGMA has been beneficial to the whole community. The novelty consists of identifying molecules using genetic modelling algorithms. I co-developed the tool, conducted the testing, wrote part of the manuscript and documentation.

He J., **Perotti G.**, Emtiaz, S. M., Toriello, F. E., Boogert, A. C. A., Henning, T., and Vidali, G. Ammonia in water-dominated ice mixtures explains the non-detection of the 2152 cm-1 band. *ApJ*, 688, A76 (2022)

Description: Laboratory study on the non-detection of the 2152 cm-1 band in protostellar spectra. Our results show that ammonia reduces the 2152 cm-1 band more effectively than carbon dioxide. We propose for the first time in the literature that this is due to the polarity of ammonia when reacting with water. I lead the discussion, wrote all the manuscript except for the results section, and compared the lab data to infrared observations.

McClure M., Rocha, W. R. M., ..., **Perotti, G.** et al. An Ice Age JWST inventory of dense molecular cloud ices. *Nat. Astron.*, 7, 431 (2023)

Description: First results of the JWST Early Release Science program Ice Age. Weak ice features and complex organic molecules are detected for the first time along two pre-stellar lines of sight. Our results suggest that the formation of these species begins earlier than previously thought in a water-ice-rich environment. I reduced the spectra, fitted and analysed the cyanate ion band, and I wrote part of the manuscript.

Papers as part of JWST international collaborations

I am a member of three JWST large international collaborations: two Guaranteed Time Observation programs (MINDS and JOYS) - and one Early Release Science program (Ice Age). Since the JWST data I worked on were some of the very first disk observations to be carried out by JWST, I coordinated the development of a completely new data reduction pipeline that became essential for works that followed within the aforementioned collaborations and beyond. As part of the MINDS team, I covered leading roles such as chairing biweekly meetings, mentoring junior colleagues, sharing expertise, codes and data reduction tools as well as co-authoring the papers below. I wrote sections of the manuscripts and gave feedback to the first authors.

MINDS (MIRI mid-INfrared Disk Survey)

Gasman D., van Dishoeck E. F., Grant S., ..., **Perotti G.** et al. MINDS. Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI. Accepted for publication in A&A (2023) (44 authors)

Kamp, I., Henning Th., Arabhavi A. M., ..., **Perotti G.** et al. The chemical inventory of the inner regions of planet-forming disks - the JWST/MINDS program, *Faraday Discuss.*, 245, 112 (2023) (43 authors)

Tabone B., Bettoni G., van Dishoeck E. F., ..., **Perotti G.** et al. A high rich hydrocarbon chemistry and a high C to O ratio in the inner disk around a very low-mass star. *Nat. Astron.*, 7, 805 (2023) (44 authors)

Grant S., van Dishoeck, E. F., Tabone, B., ..., **Perotti G.**, et al. MINDS. The Detection of 13CO2 with JWST-MIRI Indicates Abundant CO2 in a Protoplanetary Disk. *ApJL*, 947, L6 (2023) (46 authors)

JOYS (JWST Observations of Young protoStars)

Gieser C., Beuther H., van Dishoeck E. F., ..., **Perotti G.** et al. JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster. Accepted for publication in *A&A* (2023) (23 authors)

Ray, T., McCaughrean, M.J., Caratti o Garatti, A., ..., **Perotti G.** et al. Outflows from the Youngest Stars are Mostly Molecular. *Nature*, 622, 48 (2023) (23 authors)

Beuther, H., van Dishoeck, E. F., Tychoniec, L., ..., **Perotti, G.** et al. JOYS. JWST Observations of Young protoStars: Outflows and accretion in the high-mass star-forming region IRAS23385+6053. *A&AL*, 673, A121 (2023) (24 authors)

Ice Age

Sturm J. A., McClure M. K., Tracy B., ..., **Perotti G.** et al. A JWST inventory of protoplanetary disk ices: The edge-on protoplanetary disk HH 48 NE, seen with the Ice Age ERS program. Accepted for publication in A&A (2023) (27 authors)